PRE-ROUND READING A: MAKING LEARNING VISIBLE THROUGH APPROPRIATE MATHEMATICAL TASKS

BACKGROUND INFORMATION

John Hattie’s books are based on three phases of learning: surface learning; deep learning; and transfer Learning. These extracts
are provided to help make the model clearer.

Almost everything in published research works at least some time with some students. Our challenge as a profession is to be
more precise in what we do and when we do it. Timing is everything, and the wrong practice at the wrong time undermines
efforts. Knowing when and how to help a student move from sufficient levels of surface learning to deep learning is one of the
hallmarks of expert teachers

Surface Learning

It is easy to assume that surface learning means “superficial” or “shallow” or that by surface-level learning we mean rote
memorization of procedures and vocabulary that have been traditionally taught at the beginning of the lesson and are
disconnected from conceptual understanding. This is not what we mean by surface learning. Rather, the phrase surface learning
represents an essential part of learning made up of both conceptual exploration and learning vocabulary and procedural skill that

give structure to ideas.

Surface learning teaching strategies for Mathematics include: mathematical talk; daily number talks; guided questioning; worked
examples; direct instruction (ie short portions of maths lessons where teachers provide more information); strategic vocabulary
instruction; word walls; manipulatives; and spaced practice.

Deep Learning

Deep learning focuses on recognising relationships among ideas. During learning, students engage more accurately and
deliberately with information in order to discover and understand the underlying mathematical structure. Students who are
involved in deep learning are:

edisplaying, explaining, and justifying mathematical ideas and arguments
ecommunicating
ereasoning, and

eanalysing mathematical relationships and connection

One teaching strategy for Maths that supports deepen learning is accountable talk which sets discourse expectations to enrich
maths discussions. Others are encouraging students to use multiple representations and the strategic use of manipulatives.

Transfer Learning

All the work teachers do is for naught if students fail to transfer their learning appropriately by applying what they have learned
in new situations. Hattie explains that transfer learning is about the ways in which students construct knowledge and reality for
themselves as a consequence of surface knowledge & deep understanding.

The concern is that mathematics instruction too often stops at the surface level of learning, and students (particularly struggling
students) either fail to go deep and transfer, or they transfer without detecting similarities and differences between
phenomena. When this happens, the transfer does not make sense, and too often students see this as evidence that they can’t
do mathematics.

Transfer is both a goal of learning and also a mechanism for propelling learning to the next level. Transfer as a goal means that
teachers want students to begin to take the reins of their own learning, think metacognitively, and apply what they know to
real-world contexts. It also prepares them to move through the progression of mathematical understanding as ideas build on
each other across grade levels. It's when students reach into their toolbox and decide what tools to employ to solve new and
complex problems on their own. When students reach this phase, learning has been accomplished.
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s. Clark was planning a lesson on counting the value of coins

for her first graders. Her learning intention for the lesson was for
students to determine the value of up to four coins including pennies,
nickels, and dimes. Her success criterion was for students to success-
fully appiy thei rr:d"sranding to a new situation. She considered the
work in the first-grade text that included drawings of severgl coins of
which studenis we

vere {0 determine the total value. Since they had been
2 on this skill, she was certain this wouldynot be
1 students, Instead, she decided to give them the

fol}awmg task. “

You are go~g 1o 1he store and you want to buy a banana that
costs 23z, Yoo mzvs iots of pennies, nickels, and dimes. What
coins can you us= 1o pay for the banana?

Ms. Clar'k '“‘;;j"?: = v=rsty of coins to class so that each group had a

© Zelp them with the problem. She was surprised
sdents to get started on what she thought
k. It turned out some students didn’t recog-
though they recognized the drawings in the
ois Tzcv:::“i?ed the coins but had no idea of how
= maxg 25¢. Ms. Clark did not jump right in to
] .f: instead, she encouraged them to work in
groups to surroT #2250 Tiher in solving the problem. She was intrigued
to watch the grooos o= *\—M‘ on what students could do (recognize
or count the ot
show their an 3
there was anct® 1z make 25¢, the students were dumbfounded.
They had naver 5=
Intere h“,"‘j‘ e
ing themssl

would be 2n 2
nize the =zl

to put ‘hs:;r T

Making Learning Yisibie Through
Appropriate Mathematical Tasks

The banana protlzm iz an example of students having surface learn-
ing (recognizing ©~ins and/or knowing the value of individual coins)
and taking that Jearming to a more complex level through deep learning
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(combining the value of various coins) to transfer learning. Not only
did they have to recognize and add the value of the coins, but unlike
the textbook exercises, they also had to determine which coins to use.
Giving students appropriate tasks at the right time in their learning cycle
is crucial to move students from surface to deep and transfer learning.

Exercises Versus Problems

1t is important to have a common understanding of the types of tasks
we assign to students. Exercises, which typically make up most of tra-
ditional textbook practice, are provided for students to practice a par-
ticular skill, usually devoid of any context. Although these are casually
referred to as problems, in reality they are simply practice exercises.

Problems have contexts—they are usually written in words that can be
situations that apply or provide a context for a mathematical concept.
One category of problems is an application that focuses on the use of
particular concepts or procedures. Another category of problems is non-
routine or open-ended problems that involve much more than applying
a concept or procedure. We will explore each of these types of problems
in more detail in the next section.

There are a few items that we need to address before we more fully
explore the types of tasks that are useful in various phases of learning in

mathematics.

e Spaced practice—also known as distributed practice—is much
more effective than mass practice. We will discuss this more in
Chapter 4. In practical terms, this means that students should do
a few exercises or problems on a given concept each day over sev-
eral days rather than a lot of problems for only one or two days.

e Math is not a speed race. Teachers should be very careful with
timed tests. Neither fluency nor stamina requires that students
work as quickly as humanly possible. Giving students a test that
requires them to speed through problems reinforces an idea that
they should prioritize by doing the “easy” problems first and not
spend valuable time on problems that require deeper thinking.
Too often, timed tests or speed games are used to check for flu-
ency with basic mathematics facts. The problem is, speed is not
part of fluency. Fluency requires flexible, accurate, and efficient

Exercises are

meant to practice a
particular skill, but
are noncontextual.

Problems are usually
written in words that
can be situations or
provide a context
for a mathematical
concept.

EFFECT SIZE FOR
SPACED VERSUS MASS
PRACTICE = 0.71
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thinking. Fluency also requires a level of conceptual understand-
ing. One would not be considered fluent in a foreign language if
he or she could speak it by mimicking without any comprehen-
<sion! Students would be better served with practice developing
fluency rather than racing through written tasks or activities. In
addition. speed races also make some students believe that they
are not good at math. The attitude students have toward mathe-
matics is important and can impact their willingness to try.

s Tasks should not focus exclusively on procedures. Sara excelled
in math 2t 2 voung age. She seemed to understand numbers,
2r& she was very good at learning a procedure and executing it
zepzatedly on her own. But she was never asked to explain why
<hese procedurss worked. Bring down the last number under

<z = -use when deing long division? Sure, why not. Why does

-= = correct answer? How do T apply that skill to real-
o2 simoasions i T don’t understand what it means? Sara had

Zn't seem to matter to her teacher. This was a

We are no* s-guimz that students shouldn’t learn long division. But we
‘z=:73 gain much from doing long division mind-
=" s=ou'd be for students to develop a transferable

el i LT

and flexible wnsrsmanding of processes like division, and they should

e e

have the oppormunizs 7o construct this understanding in a meaningful

context. Doinz 2 ve repeated, context-free long division exercises

is just not aligned o this goal.

don’t think =

Instead, students sn-uid be expected to engage in reasoning, explo-
ration, flexible thinkinz. and making connections. They know that
learning isn't ezsv. 2nd thev should enjoy the success of meeting the
challenges that learning demands of them (Hattie, 2012). Students need
deliberate practice, guided by the teacher, not repetitive skill-and-drill
tasks, Some tasks should provide students an opportunity to engage in
mathematical modeling—taking a problem or situation, representing
it mathematically, and doing the mathematics to arrive at a sensible
solution or to glean new information that wouldn't have been possible
without the mathematics.

Still other tasks require that students practice applying a concept in dif-
ferent situations. To facilitate strategic thinking, some tasks should be
open-ended and have multiple paths to get to the solution or, in some
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cases, solutions. Math tasks don’t always have to be fun, but they can be

interesting and useful.

Should students work on exercise sets, in which they develop skill in
't be discussed here for

long division? Sure, but these types of tasks won
several reasons. First, we have seen that teachers are already quite good
at assigning exercises from a textbook, and reading about this would be
a waste of your time. More importantly, though, the research evidence
suggests that application of a concept, in varying contexts or in ways

that offer sense-making opportunities, is more effective in building true

fluency than doing repeated, nearly identical manipulations of numbers

(NCTM, 2014).

It is useful for students to be able to perfo
and efficiently, as it frees up cognitive space to apply these operations to
novel situations and relate these opera jons to other mathematics con-
cepts. But in most mathematics classes, this type of automaticity tends
to be emphasized way 100 early in the learning cycle. It also tends to take
up a disproportionate amount of class time. Procedural fluency cannot

thout true and meaningful comprehension, and “drill-

be developed wi
and-kill” exercises without understanding can harm students’ mathe-
d the way they view

matical understandings, their motivation level, an
mathematics. Students who learn procedures at the expense of mathe-
matical thinking often fail to develop an understanding of what they're
doing conceptually, and teachers find that it's more difficult to motivate
students to really understand a concept if they can already execute a
shortcut. What's needed is 2 restoration of the balance: A strong cor-
ceptual foundation makes fluency building more efficient, meaningful,

is worth devoting a lot more learn-

and useful for students. So it really
ing time to the conceptual understanding that undergirds procedural

knowledge. Children need to learn the relationship between procedures
ecome increasingly fluent thinkers.

rm math operations flexibly

and concepts in order to b

Problems fall into two categories: applications and nonroutine problems.

Applications—often called word problems or story problems—are
problems, usually related to real-life experiences, in which students use
or apply a mathematical concept or skill they have learned. Interestingly,
these problems usually follow the exercises in a traditional textbook
lesson. However, they should also be used to introduce an idea in order
to allow students to model a situation and develop conceptual under-
standing, connect that understanding to procedural skills, and then prac-
tice that skill through more applications and exercises. For those familiar

75

Procedural
fluency cannot
be developed
without true
and meaningful
comprehension,
and ‘drill-and-kill’
exercises without
understanding
can harm students’ i
mathematical
understandings, : ]
their motivation
jevel, and the
way they view
mathematics.

Applications are
problems, usually
related to real-life
experiences, in which
students use or
apply a mathematical
concept or skill they
have learned.
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Non-routine er
complex problems
are problems

that involve mare
than applying

a mathematical
procedure for
solution.

Difficulty is the
amount of effort or
work one must put in.

Complexity is the
level of thinking, the
number of steps, or
the abstractness

of the task.
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with Cognitively Guided Instruction (Carpenter et al., 2014), this is the
pathway used in that philosophy. Application problems can range from
straightforward isolution reached by applying well-practiced operations)
to difficult yinvolving application of new ideas, several steps, and/or
multiple representations).

Non-routine or complex problems are problems that involve more
than apgiving 2 mathematical procedure for solution. These types of
+ met with student reactions of “I don't know what

When we =ims 220ut the kinds of mathematical tasks we want to use
with cur sz < =2 when we should use each kind of task (and there
is a place in mathematics instruction for each type of task), we need to
think zBcus 7=z we want 10 achieve with the task. What are our learn-
ing inten < "wz2: 7olz does the task play in helping students meet
the success friienia for the lesson?

In the nexs szc= -3 w2 will examine two frameworks for classifying
problems. Ons fncuses on the level of difficulty/complexity of the task,
and the oshzr “ocusss on the kind of thinking required by the student.
One is not =emer T72= <2z other, but given your own realm of experi-
ence, one mzv 2% mozs helpful than the other as you work to connect
exercises/probizms o susface, deep, and transfer learning. We will go
into more Sz2z wits sxamples in future chapters. Our intention here is
to get you farmil: -= descriptions and the need for hard thinking
about the xinls - assign to your students to make your teach-
ing positivelr impac student leamning.

Difficulty Versus Complexity

In order to nelr sTuients master all dimensions of rigor (conceptual
understanding. procedural duency, and applications) and to help stu-
dents’ progress owzrd owning their own learning and then transfer-
ring that learming =0 mew situations, it is important for teachers to
think carefully zo-ut the level and type of challenge a given task pro-
vides. Unforrumztzly some people confuse difficulty with complexity.
We think of difficulty as the amount of effort or work a student is
expected to put Zomh, whereas complexity is the level of thinking,




DIFFICULTY AND COMPLEXITY

L—— ____.M— =
' More Complex
Strategic Thinking Expertise
Low Difficulty High Difficulty
[ High Complexity High Complexity
]
Easy < —+  Hard
Low Difficulty High Difficulty
Low Complexity Low Complexity
Fluency Stamina
v

Less Complex

Figure 3.1
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the number of steps, Of the abstractness of the task. We don’t believe
that teachers can radically impact student learning by simply increas-
ing the volume of work. We know that students learn more when they
are engaged in deeper thinking. Figure 3.1 shows how we think of this

in four quadrants.

The fluency quadrant that includes tasks of low difficulty and low com-
plexity is not unimportant; it's where automaticity resides. For example,
once students have mastered conceptual understanding of addition
and subtraction (what do they mean and what do they look like?) and
learned thinking strategies and procedures for computing sums and dif-
ferences, they need to build fluency so that they are flexible, accurate,
and efficient with these operations. Students should be able to do basic
mathematical calculations quickly and effortlessly in order to free up
onnect the operations to more complex exam-
here are times when you will want students
tain types of procedures. Instant retrieval of

& the cognitive space t0 ¢
ples or to larger concepts. T
to build automaticity on cet
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Video 3.1
What We Mean
by Tasks With Rigor

http://resources.corwin.com/
VL-mathematics
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basic number facts is foundational for being able to think conceptually

about more complex mathematical tasks. Hattie and Yates (2014) assert
that these retrievals are the product of

2 combination of exposure to others, working it out for
vourself, plaving with concrete materials, experimenting with
different forms of representation, and then rehearsing the
acguired knowledge unit within your immediate memory,
s1ansfzrming i into long-term memory, and having it validated
thousands of fimes. {p. 57)

If students  mathematical experiences are limited to this quadrant, learn-
ing o bz robust. The stamina quadrant—high difficulty but

=

ing ism't goi
low complexity—is where tasks that build perseverance reside. Stamina
refers 1o <hs 1322 of s¥icking with a problem or task even when the work
is Gifficuls 2= r=guizes patience and tenacity. This type of task would
be a problzm or sxercise (ves, they both have a place here) in which
students zr= zzkinz Their current knowledge and extending it to a more
difficult situzvon. The first-grade banana task that opened this chapter
is a good example of 2 task that promotes stamina. Students were able
to complete earier work with counting coins in the textbook examples,
but they mesded 1o 2ppiv this knowledge differently and think strategi-
cally abous the &iFferent ways to find all of the possible solutions, and
then justify how They xnew they had them all.

The daily pracsice of having students work independently to resolve
a problem beforz consuiing peers is one example of helping to build
stamina, as it Srzws on the learner’s capacity to stick with a problem.
Add to that iz = nal step of consulting one another and then
returning to the prodizm individually a second time to make any cor-
rections, and mow wou re extending their stamina even further.

The strategic 1hinxing guadrant addresses tasks that have a lower level
of difficulty, but 3 higher degree of complexity. Some rich mathemat-
ical tasks fall into this category, as they draw on students’ ability to
think strategically. An example of strategic thinking is having stu-
dents connect heir understanding of division of whole numbers to
division of decimals before any specific procedure is explored. In this
task, students must think about what they know about division and
what they know about decimals to make conjectures about place value
in the quotisnt.
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Mr. Beams has a very strange calculator. It works just fine until he
presses the = button. The decimal point doesn’t appear in the
answer. Use what you know about decimals and division to help
him determine where the decimal point belongs in each quotient.
Be ready to justify your thinking!

1. 68.64+4.4=156

2. 400.14 + 85.5 = 468

3. 0735+ 0.7 =105

4. 51,1875 + 1.05 = 4875

This task requires students to extend their understanding from previous
learning to situations that are much more complex. Complexity is often
supported by having students work in groups and justify their thinking.
Students will likely be stretched to consider how to resolve problems
collaboratively, attend to group communication and planning, and
monitor their own thinking and understanding.

The final quadrant, which describes expertise, includes those tasks that
are both complex and difficult. These tasks, in one form or another,
push students to stretch and extend their learning. A favorite task for
fifth or sixth graders is the Handshake Problem, which includes both

complexity and difficulty.

Twenty-five people attended a party. If each person shakes hands
with every other person at the party, how many handshakes will
there be?

This problem can be pretty overwhelming as there is not a particular
process or operation that will lead to a solution. Rather, students might
work together to use a combination of problem-solving strategies to get
started, including acting it out, looking for a pattern, making a table, or
starting with a simpler problem. What makes this problem even more
interesting (and complex) is the opportunity for students to make a
generalization (find a rule) so they can determine the number of hand-
shakes for any number of guests—even 1,000!
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Cognitive demand is
the kind and level of
thinking required of
students in order to
successfully engage

with and solve a task.
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This is certainiv not an exhaustive list; rather, it is meant to be illus-
trative. As part of =ach lesson, teachers should know the level of dif-
ficulty and compiexity they are expecting of students. They can then
make decisions zbout differentiation and instructional support, as well
as feedback thzt will move learning forward.

Students nesd regular contact with tasks that allow them to explore,
resolve problems, znd notice their own thinking. They need tasks that
present the might amount of challenge relative to their current perfor-
mance and undsrsznding, and to the success criteria deriving from the
learning intention. Teachers should select tasks that help students push
their thinking —ut ate not so difficult that the learner sees the goal as
unattainztis. Tezchers and students must be able to see a pathway to
attaining the goal This supports the second effective teaching practice
in NCTM: - 2x 70 4stions: Implement tasks that promote reasoning
and problem solving. The tasks that teachers assign must

1. Align with the lzaming intention.

2. Prowids stadsnts an opportunity to engage in exploration and

e o . e —
1O UNOSTSCENSTE R

4. Prowide stucsmts opportunities to implement the standards for

mathemarical pracice.
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This is why relzzing 2 735% 10 prior learning is so important (Hattie, 2012).

A Taxonomy of Tasks Based on Cognitive Demand

A second frzmese ~7a o7 Thinking about how to strategically select math-
ematical 125w 20 zm=Z <o learning intentions and success criteria is one
swomomy of mathematical tasks based on the level

Z zzcn requires (Smith & Stein, 1998). Cognitive




CHARACTERISTICS OF MATHEMATICAL TASKS
AT FOUR LEVELS OF COGNITIVE DEMAND

Lower-Level Demands (Memacrization)

e Involve either reprocucing previously learned facts, rules, formulas, or definitions or committing
facts, rules, formulzs, or defiritions to memory

e Cannot be solved using procedures because a procedure does not exist or because the time
frame in which the task is being completed is too short to use a procedure

e Are not ambiguous; such 12sks involve the exact reproduction of previously seen material, and
what is to be reproduced is clearly and directly stated

e Have no conneciion to the concepis or meaning that underlie the facts, rules, formulas, or
definitions being learned or reproduced

Lower-Level Demands (Procedurss Without Connections)

e Are algorithmic; use of the procedure either is specifically called for or is evident from prior
instruction, experience, or placement of the task

e Require limited cognitive demand for successful completion; little ambiguity exists about what
needs to be done and how to do it

e Have no connection to the concepts or meaning that underlie the procedure being used
e Are focused on producing correct answers instead of on developing mathematical understanding

e Require no explanations or explanations that focus solely on describing the procedure that was used g

Higher-Level Demands (Procedures With Connections) : i

e Focus students’ atiention on the use of procedures for the purpose of developing deeper levels of
understanding of mathematical concepts and ideas

e Suggest explicitly or implicitly pathways to follow that are broad general procedures that have
close connections to underlying conceptual ideas as opposed to narrow algorithms that are i
opaque with respect to underlying concepts '

e Usually are representad in multiple ways, such as visual diagrams, manipulatives, symbols, and
problem situations; making connections amang multiple representations helps develop meaning

¢ Require some degree of cognitive effort; although general procedures may be followed, they
cannot be followed mindlessly—students need to engage with conceptual ideas that underlie the
procedures to complete the task successfully and that develop understanding

(Continued)




(Continued)
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Higher-Level Demands (Doing Mathemsztics)
e Require complex and non-algorithmic thinking—a predictable, well-rehearsed approach or
pathway is not explicitly suggested by the task, task instructions, or a worked-out example

e Require students to explore and understznd the nature of mathematical concepts, processes, of

relationships

UEENEEL

R

! e Demand self-monitoring or sel-reguz¥'on of one’s own cognitive processes
e Require students to access relsvant trowsdge and experiences and make appropriate use of

them in working through the tas%

e Require students to analyze the t2sk 2ma 2cvualy examine task constraints that may limit possible

solution strategies and soluticns

e Require considerable cognitive eFort srg Ty
because of the unpredictable raturs ¥ 172 so/Tion process required

Source: Smith and Stein (1998). Used with permzszm.
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2= zezaz—iz1asks (1588) and Resnick on high-level-thinking skills

¥ Note: These characteristics are derived from the were 27 T2
(1987), the Professional Standardls for Teaching Mzshe—zrzs NI 79570, and the examination and categorization of hundreds of
tasks used in QUASAR classrooms (Stein, Grovar, 278 == 72227 ~222 S#2'm, Lane, and Silver, 1996).

Figure 3.2

o structure to typss and characteristics of mathematical tasks, providing

‘ teachers with crizeria that enable them to align the type of task they
choose with ths lzzmming intention and success criteria for a given out-
come {see Figuzz 3.20

Traditionally, the maority of classroom instructional time is spent on
tasks with lower level cognitive demands that require memorization
and/or procedures without connections. These are not bad tasks, and
there is a time and place for them, but they do not provide students the
range of learning experiences they need to develop mathematical habits
of mind, such as looking for patterns and using alternate representations
(Levasseur & Cuoco. 2003). Memorization tasks that follow the devel-
opment of conceptual understanding facilitate learning at the surface
level. And surface learning is important and should not be minimized.
There has been much misdirected criticism of surface learning because it
is often confused with shallow learning. That said, too much emphasis
on surface learning at the expense of learning that deepens over time

]
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and transfers to new and novel situations does not provide students
with true mathematical experiences. Balance is warranted.

Tasks with higher levels of cognitive demand on Smith and Stein’s
taxonomy—those that connect procedures to understanding—require
students to understand relationships between concepts and processes
as they analyze and explore the task and its parameters. But the pro-
cess doesn’t stop there. Tasks that call for higher level cognitive demand
extend even further to those requiring more complex thinking. There is
no predictable or well-rehearsed pathway (algorithm) that is suggested
by the task, or by a similar and already-worked example. Tasks such as
these provide students an opportunity to engage transfer learning.

However, effective teachers don't leave these things to chance. Instead, they
provide problem-solving experiences in which students engage with rich
tasks that require them to mobilize their knowledge and skills in new ways.
A close association between a previously learned task and a novel situation
is necessary for promoting transfer of learning. In time, these become tasks
that stretch students’ problem-solving abilities as they self-monitor and
self-regulate their learning. This is transfer learning in action.

Whether you are looking at a task in terms of difficulty versus complex-
ity or the level of cognitive demand students must employ, appropri-
ately challenging tasks may produce some level of student anxiety when
they are first introduced. As we have noted before, that's okay, because
students should expect learning to require an effort as they grow to
appreciate cognitively demanding tasks. An often-needed requirement
for learning to occur is some form of tension, some realization of “not
knowing,” a commitment to want to know and understand—or, as

Piaget called it, some “state of disequilibrium” (Hattle, 2012). When stu- -

dents are assigned rich tasks, they use a variety of skills and ask them-
selves questions, make meaning of mathematics, and ultimately build
a healthy and realistic relationship to mathematics as something that
is engaging, interesting, and useful—and something that makes sense.

Figure 3.3 includes examples of mathematical tasks for each level of cog-
nitive demand.

We will refer back to these tasks and present additional tasks.for your
consideration in the coming chapters. In the meantime, we encour-
age you to sharpen your pencils and experience the levels of cognitive
demand along with some metacognition by completing these tasks.
Note that answers are not provided in the back of this book!

EFFECT SIZE FOR
PROBLEM-SOLVING
TEACHING = 0.61




EXAMPLES OF TASKS AT EACH OF THE
FOUR LEVELS OF COGNITIVE DEMAND

_ ﬂigﬁeé'-i.-ave-l Doramds
. Procedures With Connections - 7
Using pattern biocks, if two hexagons are considered to be one whole,

What is the rule for
multiplying fractions? find % of % Draw your answer and explain your solution.

qrfzaflnh" i

Soagharerg

Expected student response: | Expected student response:

You multiply the numerator s \/j _
times the numerator and S A o

the denominator times the

et bk e R
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denominator. ' First you take half of the whole, which would be one hexagon. Then you
take one-sixth of that half. So | divided the hexagon into six pieces, which i
or would be six triangles. 1 only needed one-sixth, so that would be one :
triangie. Then | needed to figure out what part of the two hexagons one ]
You multiply the tWo t0p  triangle was, and it was 1 outof 12.50 1 of 1 is 7. 3
numbers and then the two ]
bottom numbers. Doing Mathematics ]
- Create 2 rez’-wor'd situation for the following problem: &
Procedures Without 2.3
! Connections i 3 4
Multiply: 'éx Solve the ?ra‘b?em sou have created without using the rule, and explain
i your salution.
i are 4
2 . 3 § One possible student response:
3 4 |
 For lunch Mom gave me three-fourths of the pizza that we ordered.
1 ) i could only finish two-thirds of what she gave me. How much of the ]
6 8 - whole pizza did  eat?
43 . I drew a rectangle to show the whole pizza. Then | cut it into fourths and !
? 5 L shaded three of them to show the part Mom gave me. Since | only ate two- 1
thirds of what she gave me, that would be only two of the shaded sections.
Expected student response:
4 3 \\ ,‘
‘E‘ ?_xi,:Eﬁ:_é_ Mo gave me the /\ i i 1[:
;T " 3 4 34 12 -1 y _ i This is what | ate |
iwi J" ! pait v ! for lunch. So % ‘ﬁ
i El x1= 5x7 =§_5_ : ; of 2 isthe same i
i 6 8 6x8 48 i \ thing as half of
| he pizza.
L8 x5 T | v — T |
95 9%5 45 1 :
Source: Smith and Stein (1998). Used with permission. < 'l

Figure 3.3




